Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nature ; 577(7790): 337-340, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942053

RESUMO

The central 0.1 parsecs of the Milky Way host a supermassive black hole identified with the position of the radio and infrared source Sagittarius A* (refs. 1,2), a cluster of young, massive stars (the S stars3) and various gaseous features4,5. Recently, two unusual objects have been found to be closely orbiting Sagittarius A*: the so-called G sources, G1 and G2. These objects are unresolved (having a size of the order of 100 astronomical units, except at periapse, where the tidal interaction with the black hole stretches them along the orbit) and they show both thermal dust emission and line emission from ionized gas6-10. G1 and G2 have generated attention because they appear to be tidally interacting with the supermassive Galactic black hole, possibly enhancing its accretion activity. No broad consensus has yet been reached concerning their nature: the G objects show the characteristics of gas and dust clouds but display the dynamical properties of stellar-mass objects. Here we report observations of four additional G objects, all lying within 0.04 parsecs of the black hole and forming a class that is probably unique to this environment. The widely varying orbits derived for the six G objects demonstrate that they were commonly but separately formed.

2.
Nature ; 439(7076): 565-7, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16452974

RESUMO

The Trojan population consists of two swarms of asteroids following the same orbit as Jupiter and located at the L4 and L5 stable Lagrange points of the Jupiter-Sun system (leading and following Jupiter by 60 degrees ). The asteroid 617 Patroclus is the only known binary Trojan. The orbit of this double system was hitherto unknown. Here we report that the components, separated by 680 km, move around the system's centre of mass, describing a roughly circular orbit. Using this orbital information, combined with thermal measurements to estimate the size of the components, we derive a very low density of 0.8(- 0.1)+0.2 g cm(-3). The components of 617 Patroclus are therefore very porous or composed mostly of water ice, suggesting that they could have been formed in the outer part of the Solar System.

3.
Science ; 310(5746): 270-4, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16166477

RESUMO

We quantified eight parent volatiles (H2O, C2H6, HCN, CO, CH3OH, H2CO, C2H2, and CH4) in the Jupiter-family comet Tempel 1 using high-dispersion infrared spectroscopy in the wavelength range 2.8 to 5.0 micrometers. The abundance ratio for ethane was significantly higher after impact, whereas those for methanol and hydrogen cyanide were unchanged. The abundance ratios in the ejecta are similar to those for most Oort cloud comets, but methanol and acetylene are lower in Tempel 1 by a factor of about 2. These results suggest that the volatile ices in Tempel 1 and in most Oort cloud comets originated in a common region of the protoplanetary disk.


Assuntos
Meteoroides , Júpiter , Compostos Orgânicos/análise , Análise Espectral , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...